
Refining VHDL Specifications
Through Conformance Testing:

Case Study of an Adaptive
Computing Architecture

by Ali Y. Duale, Bruce D. McClure,
and M. Umit Uyar

ARL-TR-2010 July 1999

Approved for public release; distribution is unlimited.

.

The fiidings in thkreport are not to be construed as an official
Department of the Amy position unless so designated by other
authorized documents.

Citation of manufacturer’s or trade names does not constitute an
off&l endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return
it to the originator.

.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-TR-2010 July 1999

Refining VHDL Specifications
Through Conformance Testing: Case Study
of an Adaptive Computing Architecture

Ali Y. Duale and M. fitit Uyar
Electrical Engineering Department, City College of the City University of New York

Bruce D. McClure
Defence Science and Technology Organization, Salisbury, Australia

Approved for public release; distribution is unlimited.

Abstract

The aim of this work is to enable a more rigorously tested product by integrating protocol
specification and conformance test sequence generation. Such an integration will allow for the
removal of costly mistakes from a specification at an early stage of the development process
before they propagate into different implementations, possibly combined with other errors. This
integrated approach has been applied to the VHDL specification of a military-oriented protocol
prototype called the “Local Proxy.” Based on the results of the conformance test generation
process, the Local Proxy specification has been refined by uncovering various missing actions,
removing redundancies, and restructuring the specification to improve its testability.

ii

.

Acknowledgments

The authors wish to acknowledge with gratitude the assistance of Dr. Samuel Chamber-

lain in making possible the collaboration at the ARL that prduced the work reported in this

document, and of Mr. George Hartwig and Mr. Frederick Brundick for their assistance with

the preparation of this document.

. . .
111

.

INTENTIONALLYLEFT BLANK

iv

Table of Contents

Page

Acknowledgments

List of Figures.

List of Tables

1. Introduction.

2. Case Study: The Local Proxy of the Adaptive Computing Architecture

2.1 Adaptive QoS Manager

2.2 Policy Service

2.3 Network QoS Manager

3. Test Generation for the Local Proxy

4. Refining the Local Proxy

4.1 Redundancies in Specifications

4.2 Reachability

4.3 Structure of EFSMs

5. Conclusions ..

6. References ..

Appendix: VHDL Specification of the Local Proxy

Distribution List

Report Documentation Page

. . .
111

vii

vii

1

2

3

3

3

5

6

7

8

9

10

11

13

31

33

V

.

INTENTIONALLY LEFT BLANK.

vi

List of Figures

Figure Page

1. Adaptive Computing Architecture 2

2. The Local Proxy of ACA 4

3. EFSM Model of the Local Proxy 5

4. EFSM Model of the Local Proxy After Inconsistencies Were Removed 7

5. Examples of Two VHDL Specifications . 9

List of Tables

Table Page

A-l Edge Conditions for the Local Proxy . 23

A-2 Test Sequence for the Local Proxy . 25

vii

,

.

INTEIwI~N.~ILY LEFT BLANK.

. . .
VI11

Today more than ever, society relies on systems built using complex software and hard-

ware components. The military is no exception, relying on these technologies for almost

every task from the foxhole to the command center. However, there have been many well-

advertised failures of both software and hardware components in mission-critical systems.

One approach for reducing this problem is increasing the effectiveness of conformance testing

by combining it with the development process. The goal of conformance testing is to find

discrepancies between a protocol’s specification and its implementation. Recent advances in

telecommunications systems development have shown the advantages of using conformance

testing techniques as an integral part of the development process.

A protocol’s external behavior is often modeled as an extended finite-state machine

(EFSM)-a finite-state machine (FSM) that has access to storage variables. Due to the ex-

istence of context variables, timers, etc., automated conformance test generation for EFSMs

is a challenging task.

Test generation methods available for the FSM models are only applicable to protocols

modeled as consistent EFSMs [l]. An EFSM is said to be consistent if it is free of condition-

to-condition, action-to-condition, and action-to-action inconsistencies. These inconsistencies

occur when the variables of the actions and/or conditions are updated differently by the ac-

tions of the specification and/or when the same variable is used by more than one condition.

(Note that these so-called inconsistencies in a specification are only impediments to the

automated test generation techniques; their presence does not imply errors in the specifi-

cation.) The Very high-speed integrated circuit Hardware Description Language (VHDL)

is a hardware description language used for specifying the behaviour of hardware and soft-

ware protocols. Algorithms for removing the inconsistencies from VHDL specifications were

reported in [2].

The objective of this report is to propose the integration of protocol specification and

conformance test sequence generation to enable a more rigorously tested product. Such an

integration will allow for the removal of costly mistakes from a specification at an early

stage of the development process, before they propagate into different implementations, pos-

sibly combining with other errors. In this report, the inconsistency detection and removal

algorithms of [l, 2] are applied to generate test sequences for a military-oriented communi-

cation protocol prototype. The Adaptive Computing Architecture (ACA) [3], which takes

into consideration managing the ever-changing defence network resources (according to pre-

defined network policies), is used as a case study. The VHDL specification of the Local

Proxy component of the ACA has been refined through conformance test generation.

Section 2 gives a description of the ACA, particularly the Local Proxy. Section 3 discusses

generating a test sequence for the Local Proxy. Section 4 presents refinements for the Local

Proxy. Section 5 draws our conclusions. The Appendix presents the VHDL specification for

the Local Proxy. *

1

1. Introduction

2. Case Study: The Local Proxy of the Adaptive

Computing Architecture

The requirements of defence networking and computing present significant challenges

to current architectures for distributed computing. In particular, the mix of distributed

computing, networks that provide variable bandwidth and reliability, and mission-critical

applications that must use these networks demands new approaches to building application

architectures. The ACA has been proposed as a framework based on open distributed

processing (ODP) bindings that supports policy-based adaptive management of network

resources [3].

An adaptive network resource management framework needs to maintain three key kinds

of information about the system. First, management policies need to be modelled to allow

adjustments of policy at runtime. Second, the interface specifications and Quality of Service

(QoS) requirements of applications and services need to be modelled so that the management

system can support a dynamic environment of communicating objects. Finally, network

topology and QoS measures need to be modelled so that the management system can make

appropriate decisions based on network conditions. Figure 1 is a high-level logical depiction

of the ACA. At the centre of the architecture is the Adaptive Quality of service Manager

(AQM) that manages resources to satisfy application requirements according to current

adaptation policies and network conditions.

Adaptive QoS Manager

Topology Editor Network QoS Manager

Monitorin Information,
Resource llocation w

Network Reality

Figure 1. Adaptive Computing Architecture.

The Policy Service stores the current adaptation policies. The Network Quality of service

Manager (N&M) maintains the system’s model of the network topology, &OS, and the current

state of the network. The Local Monitor (LM) p er orms f monitoring of QoS delivered to

applications. The Type Manager is an ODP service and is used to store interface and QoS

descriptions for applications and services. The Trader is another ODP function that manages

.

2

.

current offers of service and matches them against requests from clients via the AQM.

2.1 Adaptive QoS Manager

The function of the AQM is to establish and manage bindings between application and

service objects. While these bindings are made at the request of individual client objects,

the AQM is responsible for managing enterprise resource usage according to the current

policies. This is done by mediating new requests for service and actively managing resource

usage by existing bindings. The emphasis of the AQM, its information model and actions,

is on dealing with loss of service for critical applications-typically this involves managing

heterogeneous wide-area network resources.

If network resources are not available (and policy dictates), the AQM may take action

to manage resource usage. In the worst case, it can pre-emptively shut down an existing

binding from another application to free up resources. The AQM can also adjust an existing

binding to optimise its resource usage. For example, it could cause the binding to change

the service objects and communications paths used to shed load from overloaded network

links. Similarly, network load can be reduced by inserting filter objects within a binding.

2.2 Policy Service

The Policy Service stores the adaptation policies that specify how and when the AQM

should adapt to changing resource availability. Adaptation policies typically fall into one of

three categories: (1) usage preferences that are specific to a particular kind of application,

(2) policies that address the trade-off of cost vs. performance and (3) policies that are

modal and/or sensitive to user identity. As an example of category (3), when a field unit

is on high alert, only messages authorised by particular officers should be sent over the

unit’s high-frequency link. Our model for adaptation policies is based on Sloman’s policy

language [4].

2.3 Network QoS Manager

The N&M is the component in the adaptive resource management architecture that

holds knowledge of the state of the network. This knowledge consists of two distinct parts.

The nominal network topology and its associated &OS measures (e.g., link capacities) are

expressed using the Network Quality of service Specification Language (NQSL) described in

McClure et al. [5].

The second knowledge component maintained by the NQM deals with the current network

state. The NQM must be informed of the current network load by management interfaces on

critical links and gateways. The NQM may also receive monitoring information from LMs

regarding the QoS delivered to established bindings.

The other functions of the NQM include using the information that it gathers to perform

3

route selections and preemption on the basis of required QoS parameters. This function is

used by the AQM to allow it to make optimal service selections if there are several servers
available.

To validate the ACA it is desirable to test it on a larger network than that used by our

inital prototype. The Australian Defence Science and Technology Organisation (DSTO) is

currently building an Experimental C31 Technology Environment (EXC3ITE). This envi-

ronment is an interstate heterogeneous network infrastructure including satellite links. The

EXCSITE network will support a number of emerging Common Object Request Broker Ar-

chitecture (CORBA)-based applications. Potential users of the EXCSITE network require

method for moderating the use of network resources in this environment. Therefore the

EXC3ITE network has been modelled as a realistic exemplar heterogeneous defence network

to support this simulation.

The simulation model of the ACA represents an implementation of the architecture.

The AQM is implemented as two distributed components. The first part is a Local Proxy,

which together with the policy service is present on all workstations. This part of the A&M

implements policies local to the workstation and provides an interface between applications

and the architecture. Second, aspects of the AQM that have wider impact form part of a

LAN proxy.

The main function provided by the Local Proxy process is to manage a set of Local

Proxy2 processes, which in turn, redirect application requests to the Local Area Network
(LAN) Proxy component and performs local monitoring for the application. ‘The relationship

between Local Proxy and Local Proxy2 processes is depicted in Figure 2.

usw_cMD
. I

- Local proxy . I
I

. I

. 1
!

___*I
I
I
I

XP_ICI_OUT_ADDR
I
I
I
I

_----_____-_____J

Figure 2. The Local Proxy of ACA.

The behavioral model of a VHDL specification can be used as a formal description for

a communication protocol [6, 71. Th e e b h avioral model of the Local Proxy component has

been specified in VHDL, where the architecture is represented in a single process. An EFSM

representation of the Local Proxy is constructed from its VHDL behavior description (since

internal variables are used in the specification, a simpler FSM model could not be utilized).

The main functionality of the Local Proxy component is depicted when the component is

in its listen mode. A portion of the EFSM model of the Local Proxy, that portrays the

component’s listen mode, is presented in Figure 3. For simplicity, the number of connections

4

is assumed to be, at most, two. In the specification, when the else part of an if statement is

missing, a “complementary” else statement with a null output is created. The complemen-

tary edges of Figure 3 include e26, e2s, e36, and e42.

Figure 3. EFSM Model of the Local Proxy.

3. Test Generation for the Local Proxy

The VHDL specification for the Local Proxy of the ACA is an EFSM that can be used
to automatically generate conformance tests. An EFSM model requires the detection and

removal of the inconsistencies among the conditions and actions of its specification (if any) [l,

21.

The algorithm presented in Uyar and Dual; [l] uses symbolic execution [8] with graph-

splitting techniques to detect inconsistencies. Based on the variables used in the actions and

conditions, infeasible paths are searched in the EFSM model. If at least one infeasible path

is found, the EFSM is called inconsistent; otherwise the EFSM is consistent.

The EFSM model of the Local Proxy is found to be inconsistent. As mentioned ear-
lier, finding inconsistencies in an EFSM model simply means that some edges in the graph

5

representation of the EFSM cannot be traversed together with certain other edges. For ex-

ample, a test sequence with the edges e27, e37, and e.+3 requires TCP_ICI_IN_INF_TYPE to

be ESTAB, SG-FWD, and CLOSE/ABORT, respectively. Executing a test sequence such as

TCP_ICI_IN_INF_TYPE is not feasible because the input signal is not updated in the walk

containing these edges.

Once the inconsistencies are detected in the Local Proxy, they can be removed from the

EFSM model by the two algorithms reported in Uyar and Duale [a]. The first algorithm

eliminates the action-to-condition and action-to-action inconsistencies from the EFSM model

of the Local Proxy. If the conditions for outgoing edges of s; use variables modified in the

paths leading to s;, then s; and all nodes accessible from it are split into parallel subgraphs.

The number of times that a node is split is determined by the number of different val-

ues for the variables causing the inconsistencies at si. The second algorithm removes the

condition-to-condition inconsistencies. During the removal, path conditions up to node s;

are accumulated. If the conditions for outgoing edges from si conflict with the accumulated

path conditions, .si and all nodes accessible from it are split into parallel subgraphs. The

number of times that a node is split depends upon the number of condition sets for the

variables of the outgoing edges of si.

During the node splits, a node that can be accessed from .si is split only if there is a

path between the two nodes, without any intermediate read condition(s) for the variable(s)
that are causing inconsistencies. For example, in the Local Proxy, because of the “wait”

statement in e4s (i.e., a “read” type of statement), the nodes accessible from sss are not

split. Figure 4 shows the final graph after infeasible edges were deleted, which is free of

inconsistencies, obtained by the algorithms of Uyar and Duale [2].

The conformance tests for the Local Proxy are generated by using the Rural Chinese Post-

man (RCP) method, which combines the rural postman tours and the unique input/output

(UIO) sequences [9]. The RCP method is developed for FSM models and, therefore, can-

not address the issue of inconsistencies. However, after the inconsistencies are removed, the

EFSM model of a specification effectively becomes an FSM model that can be used with the

RCP method. A minimum-length test sequence, generated by the RCP method for the Local

Proxy, consisting of 192 steps is shown in Table A-2, in the Appendix. (During this early
step of the case study, the test sequence was generated without using the UIO sequences. A

single test step was, however, dedicated for each state that needs to be verified.)

4. Refining the Local Proxy

During the initial phase of a protocol design, it is important that the external func-

tionality of the protocol is well-defined, while the internal functionality is considered as a

black box [lo]. Th’ h’ is lerarchical approach enables a successful process cycle of design, de-

velopment and conformance testing. Within this framework, conformance test generation

for the Local Proxy produced several specification changes. Various recommendations were

presented to the protocol designers to enhance the completeness of the Local Proxy specifica-

tion and improve its testability. The following sections highlight the observations regarding

6

.

Figure 4. EFSM Model of the Local Proxy After Inconsistencies Were
Removed.

the testability of Local Proxy.

4.1 Redundancies in Specifications

.

UIO sequences are planned to be used for the state verification during conformance

testing. It has been shown that, if a state of an FSM/EFSM does not have an equivalent

state, it possesses a UIO sequence [ll]. Two states are said to be equivalent if the permissible

input set for one is a subset for the permissible input set of the other and the corresponding

outputs and next states are the same [12]. Two states are also k-equivalent if the pair cannot

be distinguished with a sequence of length k. The main reason that UIO sequences cannot be

used for FSMs/EFSMs containing equivalent states is due to the inability to detect transfer

errors. A transfer error on an edge from state .si to sj can cause the implementation under

7

test (IUT) to move to a different, but equivalent, state from sj- Failure to identify a state

may allow for nonconformant IUTs to successfully pass the conformance tests.

To describe the protocol behavior precisely, a protocol designer may repeat certain por-

tions of the specification several times. Such redundancies will eventually lead to the for-

mation of equivalent states, impairing the testability of the IUT. Therefore, balancing the

clarity of the specification with its testability is an important issue to be addressed at the

design stage.

In the process of forming UIO sequences for the Local Proxy, it is observed that some

of the states produce identical outputs for the same inputs and their next states are 2 or

3-equivalent. For example, the input/output set for ~20 is identical to that of ~15 and the

sets of their adjacent nodes ((~19, szl} for 530 and {si4, sis } for s15) contain 2or S-equivalent

nodes. Therefore, nodes sis, ~20, and ~21 can be merged with ,514, ~15, and srs, respectively.

Since the number of nodes and edges will be reduced after the merge, the length of test

sequence will be also shorter.

For testing purposes, the behavior of an EFSM is transformed to an FSM by duplicat-

ing some of the nodes and edges of the EFSM graph [l, 21. The number of states could

dramatically increase if proper methods of expansion are not employed. The removal of the

redundant states is also.helpful in reducing the number of states in the final EFSM graph.

4.2 Reachability

Conformance testing methods require that each node of the directed graph of the FSM/

EFSM model of the specification can be reached from any other node.

During the inconsistency removal process, the EFSM graph is split into subgraphs. In-

feasible transitions are dropped from the new subgraphs. A node with no incoming edges

becomes unreachable and is removed from the graph. The final graph with no inconsistencies,

shown in Figure 4 for the Local Proxy, has no unreachable nodes.

As indicated in section 2, the EFSM model of the Local Proxy contains complementary

edges (i.e., the edges, with null outputs, created for if statements whose corresponding else

statements were not present in the VHDL specification) such as ess, es& and es& The actions

of these complementary edges of Local Proxy are further discussed with the designers to

clarify if they were inserted correctly. During these discussions, it is observed that some of

the complementary edges were the only edges connecting some subgraphs to the rest of the

EFSM graph. For example, if e 26 and ess (complementary edges) were removed from Figure 4,
~22.1 and sis would become nodes without incoming and outgoing edges, respectively.

This observation revealed that certain actions were left unspecified in the Local Proxy.

As an example, let us consider the actions of the complementary edge e2s. The messages

received from TCP/IP are of three types: connection established, segment received, and con-

nection closed/aborted. The Local Proxy takes appropriate actions dictated by the type of

message received from TCP/IP. After the action-to-action and the action-to-condition in-

consistencies are removed, it must be true for all nodes of the subgraph starting sls and

8

ending 52s of Figure 4 that corm_idx # NEGAT-1. Thus, traversing the complementary

edge of e2s, with conn_idx # NEGAT-1 input and nu1Z output, is feasible. However, dis-

cussions with the designers revealed that the unspecified actions were left out by mistake

and e2s should not have been a complementary edge. The actions of e2s, corresponding to

the TCP/IP message signaling for connection established were needed to be specified when

TCPJCI_IN_INF_TYPE= ESTAB and corm_idx # NEGATS.

The modification made to the Local Proxy specification based on the reachability analysis

demonstrates the need for integrating the protocol development with the conformance test

generation process. This integration will allow for the removal of costly mistakes from the

specification at an early stage of the development, before they propagate into many different

implementations possibly combined with other errors.

4.3 Structure of EFSMs

Due to the inconsistencies among the actions and conditions [l], automated test gener-

ation for EFSM modeled protocols becomes a difficult process. The graph of EFSM model

might be split multiple times to remove the inconsistencies, where each split node may in-

crement the length of the test sequence. The complexity of splitting nodes and edges of the

EFSM graph (and hence the length of test sequence) can be reduced at the design stage by

excluding some of the inconsistencies from the specification, without tradeoffs.

In general, a protocol can be specified in several different ways leading to different

FSMs/EFSMs, all of which accomplish the same task(s). The EFSM model of a VHDL

specification consists of interconnected data flow subgraphs. The topological interconnec-

tion among these subgraphs has a direct impact on the length of tests generated for the

EFSM. A cascade of data flow subgraphs that use the same conditional variables can be
interconnected, such that the number of infeasible paths are minimum (provided that the
controlling variables are not updated in these data flow subgraphs). By minimizing the

infeasible paths, the test sequence length can be shortened.

Figure 5 shows two fragments of different VHDL specifications, which are equivalent in

terms of their functionalities. However, their corresponding EFSM models differ significantly.

if (x = 1) then A := b; if (x = 1) then A := b;

4:~ $x = 2) then A := c;
i.

’

e!z!; ~~11;

end if;
end if;

if (x 12) then A := c;
else null;
end if;

(4 04

Figure 5. Examples of Two VHDL Specifications.

All paths for the EFSM model of Figure 5(a) are valid and thus the EFSM is consis-

tent. On the other hand, the EFSM model of Figure 5(b) contains condition-to-condition

9

inconsistency and an infeasible path. The EFSM model of Figure 5(b), therefore, requires

mechanisms to remove the inconsistency, which increases the complexity of the test genera-

tion process.

A simple but important example that supports this case can be found in the Local Proxy.

As stated in section 3, it is not possible to include e27, es7, and e4a in the same test sequence.

This problem will be resolved when the inconsistencies are removed from the EFSM model.

The work of splitting some nodes, however, could have been prevented if the tail nodes for

ezs, es4, es5, ess, e40, and e41 were combined as s2s. Such combination of tail states can be

achieved by using the format depicted in Figure 5(a) for conditions of outgoing edges of s17,

~22 and ~25, which currently use the format of Figure 5(b).

Therefore, where possible, the conformance testers provide recommendations for the sec-

tions of the EFSM graph that requires heavy splitting due to inconsistencies. Restructuring

the specification may reduce the complexity of the test generation process, while reducing

the test sequence length.

5. Conclusions

This report* proposes the integration of protocol specification and conformance test se-

quence generation to enable a more rigorously tested product. Through such an approach,

specification errors can be detected at an early stage of the development process. As a case

study, the inconsistency detection and removal algorithms of [l, 21 with automated test gen-

eration techniques of Aho et al. [9] are applied to the VHDL specification of the Local Proxy

component of the ACA [3]. B ase on the results of the conformance test generation pro- d

cess [l, 21, various improvements/recommendations have been submitted to the Local Proxy

designers, such as the identification of various missing actions, the removal of redundancies,

and the reorganization of portions of the specification to enhance its testability. Several

other VHDL specifications of protocols used in the military are planned to be studied within
this integrated framework.

*The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory
or the U.S Government.

10

6. References

1. M. U. Uyar and A. Y. Duale, “Modeling vhdl specifications as consistent efsms,” in

MILCOM’97, pp. 740-744, October 1997.

2. M. U. Uyar and A. Y. Duale, “Removal of inconsistencies in vhdl specifications,” in Ad-

.

3. s.

vanced Telecommunications/Information Distribution Research Program (ATIRP),
pp. 225-229, February 1998.

Crawley, J. Inulska, and B. McClure, “Opd-based adaptive management of network

resources in heterogeneous defence networks,” in IEEE Workshop on Distributed

Systems Operations and Management, October 1998.

4. M. Sloman, “Management issues for distributed services, ” in IEEE Second International

Workshop on Services in Distributed and Networked Environments, pp. 52-59, 1995.

5. B. McClure, J. Indulska, and S. Crawley, “Adaptive computing architecture for hetero-

geneous defence networks,” in University of Queensland Technical Report UQ-TR-

429, February 1998.

6. B. Nguyen, “Using vhdl as an sdl,” in Advanced Telecommunications/Information Dis-
tribution Research Program (ATIRP), pp. 289-293, January 1997.

7. J. G. Gowens, B. Nguyen, and W. Butler, “An experiment using vhdl to model and sim-

ulate the isdn lapd data link layer,” in Advanced Telecommunications/Information

Distribution Research Program (ATIRP), pp. 163-167, February 1998.

8. W. E. Howden, “Symbolic testing and dissect evaluati_on system,” IEEE Trans. on

Software Eng., vol. SE-2, pp. 266-278, July 1977.

9. A. V. Aho, A. T. Dahbura, D. Lee, and M. U. Uyar, “An optimization technique for

10. G

11. K

12. R.

.

protocol conformance test generation based on uio sequences and rural Chinese post-

man tours,” IEEE Trans. on Communications, vol. 39, pp. 1604-1615, November

1991.

J. Holtzmann, Design and VaEidation of Computer Protocols. Prentice Hall, Engle-

wood Cliffs, NJ, 1991.

K. Sabnani and A. T. Dahbura, “A protocol test generation procedure,” Computer

Networks and ISDN Systems, vol. 15, pp. 285-297, 1988.

J. Linn and M. U. Uyar, “Conformance testing methodologies and architecture for

osi protocols,” in IEEE Computer Society, 1994.

11

1

-INTENTIONALLY LEFT BLANK.

12

Appendix:

VHDL Specification of the Local Proxy

13

,

.

INTENTIONALLY LEFT BLANK.

.

14

,

library IEEE;

use IEEE.std_logic_l164.a11;

use IEEE.std_logic_arith.all;

use std.all;

entity LOCAL-PROXY is

port (USER-CMD: in std-logic;

TCP_ICI-OUT_INF: out stdlogic_vector (0 to 15);

TCP_ICI_OUT_ADDR: out std_logic_vector (0 to 63);

TCP-ICIJNJNF: in std_logic-vector (0 to 15);

TCP_ICIJN_ADDR: in stdlogic-vector (0 to 63);

CMD_OUT-ADDR: out stdlogic-vector (0 to 63);

CONNS_OUT_PORT: out std_logic_vector (0 to 31);

CONNS_OUT_ADDR: out std_logic-vector (0 to 63);

ACCESS-ADDR: out stdlogic-vector (0 to 9);

LP_MSG_OUTl, LP_MSG_OUT2, LP_MSG_OUTS, LP_MSG_OUT4,

LP_MSG_OUT& LP_MSG_OUTG, LP_MSG_OUT7, LP_MSG_OUT& LP_MSG_OUTS,
LP_MSG_OUTlO: out stdlogic-vector (0 to 15);

TCP_ICI_PACKET_INDX: in integer);

end LOCAL-PROXY; architecture LOCAL-PROXY of LOCAL-PROXY is

begin

process

constant MAXCONN: INTEGER:= 10;

constant TYPE-0 : INTEGER:= 0;

constant TYPE-3 : INTEGER:= 3;

constant CONNJD-4: INTEGER:= 4;
constant CONNIDS: INTEGER:= 8;

constant STRMJNDX-9 :INTEGER:= 9;

constant STRMJNDX-11 : INTEGER:= 1

constant NUMSKS-12 : INTEGER:= 12;

constant NUMPKS14 : INTEGER:= 14;

constant port-block_0 : INTEGER:= 0;

constant port-block-15 :INTEGER:= 15;

constant URGENT-15 : INTEGER:= 15;

1;

constant REM-PORT-32 : INTEGER:= 32;

constant REM-PORT-47 ‘: INTEGER:= 47;

constant REM_ADDR_48 : INTEGER:= 48;‘

constant REMADDR-63 : INTEGER:= 63;

constant LOCAL_PORT_O :INTEGER:= 0;

constant LOCAL_PORT_15 :INTEGER:= 15;

constant LAST-SIGNAL-O: INTEGER:= 0;

constant LAST-SIGNALS: INTEGER:= 3;

15

constant

constant

constant

constant

constant

constant

constant

constant
constant

constant

constant

constant

constant

constant

constant

constant

constant

constant

constant

constant

constant

constant
constant

constant

constant

constant

constant

constant

constant

constant

constant

constant

constant

constant

constant

constant

constant

constant

constant

LAN-REM-PORT_32: INTEGER:= 32;

LAN-REM_PORT_47: INTEGER:= 47;

LAN_REM_ADDR_lG: INTEGER:= 16;

LOCAL-INDEX-O: INTEGER:= 0;

LOCAL_INDEX_3: INTEGER:= 3;

LAN-REMADDR31: INTEGER:= 31;

EMPTY : std_logic_vector (0 to 15):= “1111111111111111”;

CONN_UNUSED: std_logic-vector (0 to 4):= “11111”;

ZER-0 : std_logic-vector (0 to 15):= “0000000000000000”;

BEG_EXC : std_logic:= ‘0’;

END-EXC : stdlogic:= ‘1’;

PKT_0: std-logic-vector (0 to 2):= “000”;

PKT-1: std_logic-vector (0 to 2):= “001”;

UNKNOWNJD: std_logic_vector (0 to 4):= “00000”;

NONE: std_logic-vector (0 to 2):= “000”;

MSG_OPEN: std_logic-vector (0 to 3):= “0001”;

LAN-RX: std_logic-vector (0 to 3):= “0010”;

MSG_RX: std-logic-vector (0 to 3):= “0011”;

MSG-CLOSE:std_logic_vector (0 to 3):= “0100”;

CLOSE: std_logic-vector (0 to 3):= “0101”;

ABORT:stdlogic_vector (0 to 3):= “0110”;

SEG-FWD:stdlogic_vector (0 to 3):= “0111”;
ESTAB:stdlogic_vector (0 to 3):= “1111”;

FIRST_LP:std_logic_vector(O to 9):= “0000000001”;

SECOND_LP:stdlogic_vector(O to 9):= “0000000010”;

THIRD_LP:std_logic_vector(O to 9):= “0000000100”;

FOURTH-LP:std_logic_vector(O to 9):= “0000001000”;

FIFTHLP:std_logic_vector(O to 9):= “0000010000”;

SIXTH_LP:std_logic_vector(O to 9):= “0000100000”;

SEVENTH_LP:std_logic_vector(O to 9):= “0001000000”;

EIGHTH_LP:std_logic_vector(O to 9):= “0010000000”;

NINETH_LP:std_logic_vector(O to 9):= “0100000000”;

TENTH_LP:std_logic_vector(O to 9):= “1000000000”;

NO_LP:std_logic_vector(O to 9):= “0000000000”;

CMD_OPEN_ACTIVE : std_logic-vector (0 to 3):= “0001”;

CMD_OPEN-PASSIVE : std_logic-vector (0 to 3):=“0010”;

CMD-CLOSE : std_logic-vector (0 to 3):=“0011”;

CMD-ABORT: stdlogic-vector (0 to 3):=“0100”;

CR/ID-RECEIVE: std_logic_vector (0 to 3):=“0101”;

subtype cmd_addr is std_logic_vector(O to 63);

subtype cmdinf is std_logic_vector(O to 15);

subtype ind_addr is std_logic_vector(O to 63);

subtype ind_inf is std_logic_vector(O to 15);

subtype connin is std_logic_vector(O to 15);

type corms-in-array is array (0 to MAX_CONN-1) of corm_in;

16

subtype conn_por is stdlogic_vector(O to 63);

type conns_por_array is array (0 to MAXCONN-1) of corm-por;

subtype connadd is stdlogic_vector(O to 63);

type conns_add_array is array (0 to MAXCONN-1) of connadd;

constant LAN-PROXY-PORT: std-logic-vector (0 to 15):= “0000100000000000”;

constant PORT-BLOCK-START: std_logic-vector (0 to 15):= “0000100000000000”

constant LANSROXYADDRESS: stdlogic-vector (0 to 15):= “0000001000000000”;

constant LAN-IDX: INTEGER:= 0;

constant NEGAT-1: INTEGER:= -1;

constant SERVER-PORT: std-logic-vector (0 to 15):= “0000010000000000”;

constant DELTA-I: stdlogic-vector (0 to 15):= “0000000000000001”;

- - Declare all the variables here.

variable corms-inf: corms_in-array;

variable corms-addr: corms_add-array;

variable corms-port: corms-per-array;

variable tempinf: cmdinf;

variable msgl : cmdinf;

variable cmdiciinf: cmdinf;

variable cmdici-addr: cmd-addr;

variable indiciinf: cmdinf;

variable indici-addr: cmd-addr;

variable port-block: stdlogic-vector (0 to 15);

variable i: INTEGER;
variable connid: stdlogic_vector(O to 4);

variable connidx: INTEGER;

variable tempindex: INTEGER;

variable LAN_PROXYADDR: std_logic_vector(O to 15);
______________ Actual process starts here - - - - - - - - - - - - - - - - - - -

begin

wait on USERCMD;

if (USER-CMD = BEG_EXC) then
_________________ Do initialization _

tempinf (CONNJDA to CONN_IDS):= CONN-UNUSED;

for i in 0 to MAXCONN loop

conns_inf(i):= tempinf;

end loop;

wait for 103000 ms;

port-block:= PORT-BLOCK-START;

cmdiciinf(TYPE_0 to TYPE3):= CMD_OPEN_ACTIVE;

cmdiciinf(CONN-IDA to CONNJDS):= UNKNOWNJD;

cmdiciinf(STRMJNDX_9 to STRM_INDX_ll):= NONE;

cmdiciinf(NUM_PKS_12 to NUM-PKS-14):= PKT_O;

cmdiciinf(URGENT_15):= ‘0’;

cmdiciaddr(port_block_O to port_block_l5):= port-block;

cmdici-addr(REM_PORT-32 to REM_PORT_47):= LAN-PROXY-PQRT;

17

cmdiciaddr(REM_ADDR_48 to REM_ADDR_63):= LAN_PROXYADDR;

port-block:= port-block + DELTA-l;

cmdiciinf(NUMPKS12 to NUM_PKS_14):= PKT_0;

- - Now output the ICI to TCP

TCPJCI_OUT_INF <= cmdiciinf;

TCP-ICI_OUT_ADDR <= cmdiciaddr;’
_-_____- This is now the START state - - - - - - - - - - - - - - - - - - -

wait on TCPJCIJNJNF, USERCMD;

if (USER-CMD /= END_EXC) then

while (TCP_ICIJNJNF(TYPE_O to TYPE-S) /= ESTAB) loop

- - This is the LAN_OP state

connid:= TCP_ICI_INJNF(CONNJD-4 to CONNJDB);

tempinf(CONNJD_4 to CONN_IDS):= TCP_ICI_INJNF(CONN_ID_4 to CONNJDS);

connidx:= LAN-IDX;

tempinf(STRMJNDX-9 to STRM_INDX_ll):= NONE;

conns_addr(conn_idx):= TCP-ICI-IN-ADDR;

corms-port (conn_idx):= TCP_ICI_IN_ADDR;

- - CONNSOUTPORT <= conns_port(conn_idx);

CONNS-OUT_ADDR <= conns_addr(conn_idx);

cmdiciinf:= TCP_ICI_IN_INF;

cmdiciinf(NUMPKS12 to NUM_PKS_14):= PKT_1;
cmdiciinf(TYPE_0 to TYPE3):= CMDRECEIVE;
TCP_ICI_OUT_INF <= cmdiciinf;
TCP_ICI_OUT_ADDR <= cmdiciaddr; - - consist of ports and addrs

CMD_OUT_ADDR <= cmdici-addr;

connsinf(conn_idx):= tempinf;

wait on TCP_ICI_IN_INF, USERCMD;

end loop;

wait for 1000 ms;

- - Then open passively for application clients

- - This is state Pending

cmdiciinf(CONN_ID-4 to CONN_IDS):= UNKNOWN-ID;
cmdiciaddr(REM_PORT-32 to REM_PORT_47):= EMPTY;

cmdiciaddr(LOCAL_PORT-O to LOCAL_PORT_15):= SERVER-PORT;

cmdici_addr(REM_ADDR-48 to REM_ADDR_63):= ZER_0;
cmdiciinf(TYPE_0 to TYPE3):= CMD-OPEN-PASSIVE;

cmdiciinf(NUMPKS12 to NUM_PKS_14):= PKT-0;

TCP_ICI_OUT_INF <= cmdiciinf;

TCP_ICI_OUT_ADDR <= cmdiciaddr;

CR/ID_OUT_ADDR <= cmdici_addr;

- - Process anything from LAN or application

- - This is the LISTEN state

wait on USER_CMD, TCP_ICI_IN_INF;

while (USER-CMD /= END_EXC) loop

indiciinf:= TCP_ICI_INJNF;

18

.

indici_addr:= TCP-ICI-IN-ADDR;

connid:= indiciinf(CONNJD_4 to CONNJDS);
_ _ Work out the corm-idx

if (connid = CONN_UNUSED) then

conn_idx:= NEGAT_1;

else

i:= 0 ;

tempinf:= conns_inf(i);

while (i < MAX-CONN and

tempinf(CONN-ID-4 to CONN_IDS) /= connid) loop

i:= i + 1;

tempinf:= conns_inf(i);

end loop;

if (i < MAX_CONN) then

corm-idx: = i;

else

conn_idx:= NEGAT-1;

end if;

end if;

if (indiciinf(TYPE_0 to TYPE3) = ESTAB) then

if (corm_idx = NEGATJ) then
_ _ _ _ _ _ _ _ _ D&pen _ _ _ _ _ _ _ _ _ _ _ _

- - find an empty spot in the connection array

i:= 1; - - 0 reserved for LAN proxy

tempinf:= conns_inf(1);

while (i < MAX-CONN and

tempinf(CONNJD-4 to CONN_IDS) /= CONN-UNUSED) loop
i:= i+l;

tempinf:= conns_inf(i);

end loop;

if (i < MAX_CONN) then

conn_idx:= i;

connsinf(conn_idx):= indiciinf;

conns_addr(conn-idx):= indici-addr;

conns_port(conn_idx):= corms-port (LAN-IDX); - - for LAN info.
_ _ Do another passive open

cmdiciinf(TYPE_0 to TYPE3):= CMD_OPEN_PASSIVE;

cmdiciinf(CONN_ID-4 to CONNJDS):= UNKNOWNID;

cmdici_addr(LOCAL_PORT-0 to LOCAL_PORT_15):= SERVER-PORT;

cmdici_addr(REMJ?ORT_32 to REM-PORT-47):= EMPTY;

cmdici-addr(REM-ADDR_48 to REM_ADDR-63):= ZER_0; - - ie no address

cmdiciinf(NUM_PKS_12 to NUM_PKS_14):= PKT_0;

TCP_ICI_OUT_INF <= cmdiciinf;

TCP_ICI_OUT_ADDR <= cmdiciaddr;
_ _ Now send the ICI to the Local Proxy2 process

19

_ _ this is to avoid a spawn !!
_ _ corms-inf(conn_idx, TYPE-O to TYPE-3):= MSG_OPEN;
tempinf:= conns_inf(connidx);
tempinf(TYPE_0 to TYPE3):= MSG-OPEN;
corms-inf (conn_idx):= tempinf;
msgl:= conns_inf(connidx);

case i is
when 0 => LP_MSG_OUTl <= msgl;

ACCESS_ADDR(O to 9) <= FIRST_LP;
when 1 => LP-MSG_OUT2 <= msgl;

ACCESS_ADDR(O to 9) <= SECOND._LP;
when 2 => LP_MSG_OUT3 <= msgl;

ACCESS_ADDR(O to 9) <= THIRD._LP;
when 3 => LP_MSG_OUT4 <= msgl;

ACCESS_ADDR(O to 9) <= FOURTH-LP;
when 4 => LP_MSG_OUT5 <= msgl;

ACCESS_ADDR(O to 9) <= FIFTH_LP;
when 5 => LP-MSG_OUTG <= msgl;

ACCESS_ADDR(O to 9) <= SIXTH-LP;
when 6 => LP_MSG_OUT7 <= msgl;

ACCESS_ADDR(O to 9) <= SEVENTH_LP;
when 7 => LP_MSG_OUT8 <= msgl;

ACCESS_ADDR(O to 9) <= EIGHTH-LP;
when 8 => LP-MSG_OUT9 <= msgl;

ACCESS_ADDR(O to 9) <= NINETH-LP;
when 9 => LP_MSG_OUTlO <= msgl;

ACCESS_ADDR(O to 9) <= TENTH-LP;
when others =>

ACCESS_ADDR(O to 9) <= NO-LP;
end case;

end if;
end if;

end if;
if (indiciinf(TYPE_0 to TYPE3) = SEG_FWD) then
_____--_-------______ _D&egFwd__ _______ _ ____,________

- - - Ask to read from socket.

cmdiciinf(CONNJD_4 to CONN_IDS):= UNKNOWN-ID;
cmdici_addr(REM_PORT-32 to REM_PORT_47):= EMPTY; _

cmdiciaddr(REM_ADDR_48 to REM_ADDR_63):= ZER_0;
cmdiciaddr(LOCAL_PORT-0 to LOCAL_PORT_15):= SERVER-PORT;
cmdiciinf(NUM_PKS_12 to NUM_PKS_14):= PKT-1;

cmdiciinf(TYPE_0 to TYPE3):= CMD_RECEIVE;
TCP-ICI_OUT-INF <= cmdiciinf;
TCP-ICI_OUT-ADDR <= cmdiciaddr;
if (corm_idx /= NEGAT_1) then

20

- _ connection is valid

if (connidx = LAN-IDX) then

tempindex:= TCPJCLPACKETJNDX;

tempinf:= conns_inf(tempindex); .
tempinf(TYPE-0 to TYPE-S):= LAN-RX;

else
. _ _ Received a packet from the application

tempinf:= conns_inf(connidx);

tempinf(TYPE_0 to TYPE_3):= MSG-RX;

end if;
_ _ Now send the ICI to the Local Proxy2 process
_ _ this is a kludge to avoid a spawn !!

conns_inf(conn_idx):= tempinf;

msgl:= conns_inf(connidx);

case i is

when 0 => LP_MSG_OUTl <= msgl;

ACCESS_ADDR(O to 9) <= FIRSTLP;

when 1 => LP_MSG_OUT=! <= msgl;

ACCESS_ADDR(O to 9) <= SECOND_LP;

when 2 => LP_MSG-OUT3 <= msgl;

ACCESS_ADDR(O to 9) <= THIRD-LP;

when 3 => LP_MSG_OUT4 <= msgl;

ACCESS_ADDR(O to 9) <= FOURTHLP;

when 4 => LP_MSG_OUT5 <= msgl;

ACCESS_ADDR(O to 9) <= FIFTHLP;

when 5 => LP_MSG_OUTG <= msgl;

ACCESS_ADDR(O to 9) <= SIXTHLP;

when 6 => LP_MSG_OUT7 <= msgl;

ACCESS_ADDR(O to 9) <= SEVENTH_LP;

when 7 => LP_MSG_OUT8 <= msgl;

ACCESS_ADDR(O to 9) <= EIGHTH_LP;

when 8 => LP_MSG_OUTS <= msgl;

ACCESS_ADDR(O to 9) <= NINETHLP;

when 9 => LP_MSG_OUTlO <= msgl;

ACCESS_ADDR(O to 9) <= TENTH_LP;

when others =>

ACCESS_ADDR(O to 9) <= NO_LP;

end case;
end if;

* end if;

if (indiciinf (TYPE-0 to TYPE-3) = CLOSE or

, indiciinf(TYPE_0 to TYPE-3) = ABORT) then
_ _ ICI-INT-TYPE = INTCLOSE or INT-ABORT
_ _ _ _ _ _ _ _ _ _DoCIose _ _ _ _ _ _ _ _ _ _

if (connidx /= NEGAT_1) then

21

_ _ connection is valid

if (connidx /= LANIDX) then

tempinf:= corms-inf(connidx);

tempinf(TYPE_0 to TYPE3):= MSG_CLOSE; .
conns_inf(conn_idx):= tempinf;

end if;

- - Now send the ICI to the Local Proxy2 process
_ _ this is a kludge to avoid a spawn !!

msgl:= conns_inf(connidx);

case i is

when 0 => LP-MSG-OUT1 <= msgl;

ACCESS_ADDR(O to 9) <= FIRST_LP;

when 1 => LP_MSG_OUT=! <= msgl;

ACCESS_ADDR(O to 9) <= SECOND_LP;

when 2 => LP-MSG-OUT3 <= msgl;

ACCESS_ADDR(O to 9) <= THIRD-LP;

when 3 => LP_MSG_OUT4 <= msgl;

ACCESS_ADDR(O to 9) <= FOURTH-LP;

when 4 => LP_MSG_OUT5 <= msgl;

ACCESS_ADDR(O to 9) <= FIFTHLP;

when 5 => LP-MSG-OUT6 <= msgl;

ACCESS_ADDR(O to 9) <= SIXTH_LP;

when 6 => LP_MSG_OUT7 <= msgl;

ACCESS_ADDR(O to 9) <= SEVENTH_LP;

when 7 => LP-MSG-OUT8 <= msgl;

ACCESS_ADDR(O to 9) <= EIGHTH_LP;

when 8 => LP_MSG-OUT9 <= msgl;

ACCESS_ADDR(O to 9) <= NINETH-LP;

when 9 => LP_MSG_OUTlO <= msgl;

ACCESS_ADDR(O to 9) <= TENTH-LP;

when others =>

ACCESS_ADDR(O to 9) <= NO_LP;

end case;

end if;

end if;

wait on USERCMD, TCP_ICI_IN_INF;

end loop;

end if;

end if;

end process;

end LOCAL-PROXY;

22

Table A-l. Edge Conditions for the Local Proxy

Edge Condition

e0 l=l

el USER_CMD = USER_CMD_1

e2 USER_CMD-1 # BEG_EXC

e3 USER_CMD_l = BEG_EXC

e4 i < MAX_CONN

e4.1 1=1

e5 i >= MAX_CONN

e6 1=1

e7 TCP_ICI-INJNF = TCP_ICI_IN_INF_l or USER_CMD = USER-CMD_2

e8 USR-CMD = END_EXC

e9 USR_CMD f END_EXC

el0 TCP-ICI-ININF-TYPE = ESTAB

ell TCP_ICI-ININF-TYPE $: ESTAB

el2 l=l

e13 TCPJCLININF = TCP_ICIJNJNF_2 or USER_CMD = USER_CMD-3

el4 1=1

e15 TCPJCI-ININF = TCP_ICIJNJNF_3 or USER_CMD = USER-CMD_4

e16 USR_CMD = END_EXC

el7 USR_CMD # END-EXC

e18 connid # CONN-UNUSED

e19 connid = CONN_UNUSED

e20 i >= MAX_CONN

e21 i < MAX_CONN

e22 conns(i).connid # condid

e23 conns(i).connid = condid

e24 i >= MAX_CONN

e25 i < MAX_CONN
e26 TCP_ICI_IN_INF_TYPE f ESTAB

e27 TCP_ICI_IN-INF_TYPE = ESTAB

e28 connidx # NEGAT-1

e29 connidx = NEGAT_1

e30 i >= MAX_CONN

e31 i < MAX-CONN

e32 conns(i).connid # condid

e33 conns(i) .connid = cond_id

e34 i >= MAX_CONN

e35 i < MAX_CONN
e36 TCPJCI_INJNF_TYPE # SG_FWD

e37 TCP_ICI_INJNF_TYPE = SG_FWD

e38 connidx = NEGAT-1

e39 connidx # NEGAT-1

23

Edge Conditions for the Local Proxy (Continued)

Edge 1 Condition
connidx # LANlDX e40

e41

e42

e43

e44

e45

e46

e47

e48

e49

connidx = LAN-IDX
TCP_ICI_INJNF_TYPE
TCP_ICI_INJNF_TYPE
connidx $: NEG_4T_1
connidx = NEGAT-1
connidx + LAN_IDX
connidx = LAN-IDX
l=l

CLOSE or ABORT
= CLOSE or ABORT

TCP-ICI-INJNF = TCP_ICI_IN_INF_4 or USER_CMD = USER-CMD_5

24

Table A-2. Test Sequence for the Local Proxy

Step From State
1 NO
2 Nl
3 N2
4 N2
5 N3
6 N3
7 N3
8 N4
9 N4
10 N5
11 N5
12 N6
13 N6
14 N7
15 N7
16 N8
17 N8
18 N9
19 N9
20 N7
21 NlO
22 N10
23 Nil
24 Nil
25 N12
26 N12
27 N13
28 N13
29 N14
30 N15
31 N15
32 N16
33 N16
34 N17
35 N17
36 N22.1
37 N22.1
38 N25.1
39 N25.1
40 N26

To State
Nl
N2
N2
N3
N3
N3
N4
N4
N5
N5
N6
N6
N7
N7
N8
N8
N9
N9
N7
NlO
NlO
Nil
Nil
N12
N12
N13
N13
N14
N15
N15
N16
N16
N17
N17

N22.1
N22.1
N25.1
N25.1
N26
N26

Input/Output
IO/O1
11/03

verify N2
13/03

verify N3
14/04
15/05

verify N4
16/06

verify N5
17/07

verify N6
19/09

verify N7
Ill/O11
verify N8
112/012
verify N9
113/013
110/010

verify NlO
114/014

verify Nil
115/015

verify N12
117/025

verify N13
118/018
128/028

verify N15
123/023

verify N16
125/025

verify N 17
126/026

verify N22.1
136-l/036.1
verify N25.1

143/043
verify N26

25

Test Sequence for the Local Proxy (Continued)

Step From State
41 N26
42 N27
43 N27
44 N28
45 N28
46 N29
47 N29
48 N29
49 N12
50 N13
51 N14
52 N15
53 N16
54 N17
55 N22.1
56 N25.1
57 N26
.58 N27
59 N28
60 N29
61 N12
62 N13
63 N14
64 N15
65 N16
66 N17
67 N22.1
68 N23
69 N23
70 N24
71 N24
72 N25
73 N25
74 N28
75 N29
76 N12
77 N13
78 N14
79 N15
80 N16

To State Input/Output
N27 144/044
N27 verify N27
N28 147/ 047
N28 verify N28
N29 148/028
N29 verify Ns29
N29 verify N29
N12 149/049
N13 117/025
N14 118/018
N15 128/028
N16 123/023
N17 125/025

N22.1 126/026
N25.1 136.1/036.1
N26 1431043
N27 144/044
N28 146/046
N29 148/028
N12 149/049
N13 117/025
N14 118/018
N15 128/028
N16 123/023
N17 I25 /025

N22.1 126/026
N23 137/037
N23 verify N23
N24 139/039
N24 verify N24
N25 141/041
N25 verify N25
N28 142/042
N29 148/028
N12 149/049
N13 117/025
N14 118/018
N15 128/028
N16 123/023
N17 125/025

26

Test Sequence for the Local Proxy (Continued)

Step From State
81 N17
82 N22.1
83 N23
84 N24
85 N25
86 N28
87 N29
88 N12
89 N13
90 N14
91 N15
92 N16
93 N17
94 N18
95 N18
96 N22
97 N22
98 N25
99 N28
100 N29
101 N12
102 N13
103 N14
104 N15
105 N14
106 N14
107 N16.1
108 N17.1
109 N17.1
110 N18.1
111 N18.1
112 N19
113 N19
114 N20
115 N20
116 N21.1
117 N21.1
118 N22.3
119 N22.3
120 N25.3

To State Input/Output
N22.1 126/026
N23 I37/037
N24 139/039
N25 140/040
N28 142/042
N29 1481028
N12 149/049
N13 117/025
N14 118/018
N15 1281028
N16 123/023
N17 125/025
N18 127/027
Nl8 verify Nl8
N22 1281028
N22 verify N22
N25 136/036
N28 142/042
N29 148/028
N12 149/049
N13 117/025
N14 118/018
N15 1281028
N14 122/022
N14 verify N14

N16.1 120/020
N17.1 124/024
N17.1 verify N17.1
N18.1 127.1/027.1
N18.1 verify N18.1
N19 129/029
N19 verify N19
N20 131/031
N20 verify N20

N21.1 133/033
N21.1 verify N21.1
N22.3 135/035
N22.3 verify N22.3
N25.3 136.3/036.3
N25.3 verifv N25.3

27

Test Sequence for the Local Proxy (Continued)

Step From State
121 N25.3
122 N28.1
123 N28.1
124 N29
125 N12
126 N13
127 N17.1
128 N18.1
129 N19
130 N20
131 N19
132 N21
133 N21
134 N22.2
135 N22.2
136 N25.2
137 N25.2
138 N29
139 N12
140 N13
141 N17.1
142 N22.4
143 N22.4
144 N23.1
145 N23.1
146 N25.5
147 N25.5
148 N28.2
149 N28.2
150 N28.2
151 N28.2
152 N29
153 N12
154 N13
155 N17.1
156 N22.4
157 N25.4
158 N25.4
159 N26.1
160 N26.1

To State Input/Output
N28.1 142.2/042.2
N28.1 verify N28.1
N29 148.1/048.1
N12 149/049
N13 117/025

N17.1 119/019
N18.1 127.1/027.1
N19 129/029
N20 131/031
N19 132/032
N21 130/030
N21 verify N21

N22.2 134/034
N22.2 verifyN 22.2
N25.2 136.2/036.2
N25.2 verify N25.2
N29 142.1/042.1
N12 149/049
N13 117/025

N17.1 119/019
N22.4 126.1/026.1
N22.4 verify N22.4
N23.1 137.1/037.1
N23.1 verify N23.1
N25.5 138/038
N25.5 verify N25.5
N28.2 142.4/042.4
N28.2 verify N28.2
N28.2 verify N28.2
N28.2 verify N28.2
N29 148.21048.2
N12 149/049
N13 117/025

N17.1 119/019
N22.4 126.1/026.1
N25.4 136.4/036.4
N25.4 verify N25.4
N26.1 143.1/043.1
N26.1 verify N26.1
N27.1 145/045

.

28

Test Sequence for the Local Proxy (Continued)

Step From State
161 N27.1
162 N27.1
163 N28.2
164 N29
165 N12
166 N13
16’7 N17.1
168 N22.4
169 N25.4
170 N26.1
171 N27.1
172 N28.2
173 N29
174 N12
175 N13
176 N17.1
177 N22.4
178 N25.4
179 N28.2
180 N29
181 N12
182 NO
183 Nl
184 N2
185 N3
186 N4
187 N5
188 N6
189 NO
190 Nl
191 N2
192 NO

I- To State Input/Output
N27.1 verify N27.1
N28.2 147.1/047.1
N29 148.2/ 048.2
N12 149/049
N13 117/025

N17.1 119/019
N22.4 126.1/026.1
N25.4 136.4/036.4
N26.1 143.1/043.1
N27.1 1451045
N28.2 146.1/046.1
N29 148.21048.2
N12 149/049
N13 117/025

N17.1 119/019
N22.4 126.1/026.1
N25.4 136.4/036.4
N28.2 142.3/042.3
N29 148.2/048.2
N12 149/049
NO 116/016
Nl IO/O1
N2 11/03
N3 13/03
N4 15/05
N5 16/06
N6 17/07
NO 18/08
Nl IO/O 1
N2 11/03
NO 12/02
NO verify NO

29

INTENTIONALLY LEFT BLANK.

.

30

NO. OF
COPIES

2

ORGANIZATION
NO. OF
COPIES ORGANIZATION

DEFENSE TECHNICAL 1 DIRECTOR
INFORMATION CENTER US ARMY RESEARCH LAB
DTIC DDA AMSRLDD
8725 JOHN J KINGMAN RD J J ROCCHIO
STE 0944 2800 POWDER MILL RD
FT BELVOIR VA 22060-6218 ADELPHI MD 20783-l 145

HQDA
DAMOFDQ
D SCHMIDT
4OOARMYPENTAGON
WASHINGTON DC 203 lo-0460

1 DIRECTOR
usARMYRESEARCHLAB
AMSRL CS AS (RECORDS MGMT)
2800 POWDER MILL RD
ADUHI MD 20783-l 145

OSD
OUSD(A&T)/ODDDR&E(
RJTREW
THEPENTAGON
WASHINGTON DC 20301-7100

3 kECTOR
usARMYRESEARCHLAB
AMSRLCILL
2800 POWDER MILL RD
ADELPHI MD 20783-l 145

DPTY CG FORRDE HQ
usARMYMATER.IELcIvlD
AMCRD
MG CALDWELL 4
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

ABERDEEN PROVING GROUND

DIR USARL
AIVISRL CI LP (305)

INST FOR ADVNCD TCHNLGY
THE TJNIV OF TEXAS AT AUSTIN
PO BOX 202797
AUSTIN TX 78720-2797

DARPA
B KASPAR
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

NAVALSURFACE WARFARE Cl-R
CODE B07 J PENNELLA
17320 DAHLGREN RD
BLDG 1470 RM 1101
DAHLGREN VA 22448-5100

US MILJTARY ACADEMY
MATH SC1 CTR OF EXCELLENCE
DEPT OF MATHEMATICAL SCI
MAJMDPHILLJFS
THAYERHALL
WEST POINT NY 10996-1786

31

NO. OF
COPIES ORGANIZATION

1

1

23

DIRECTOR
US ARMY RESEARCH LAB
AMSRLIS
JGANTT
2800 POWDER MILLRD
ADELPHI MD 20783-l 145

DIRECTOR
us ARMY RESEARCH LAB
AMSRL IS T
JGOWENS
2800 POWDER MILL RD
ADELPHI MD 20783-l 145

ABERDEEN PROVING GROUND

DIRUSARL
AMSRL IS T

SCHAMBERLAIN
AMSRL IS TP

B COOPER (11 CPS)
CRETl-ER
F BRUNDICK
LMARVEL

AMSRL IS CI
B BROOME
H CATON
G HARTWIG (4 CPS)
M LOPEZ
A BRODEEN

32

REPORT DOCUMENTATION PAGE Fomr Approved
Ohll3 No. 07049188

~ublbc mpDmng buldon 1or mls calacnon Of lnlomwon * ~(oMge~hourprrslp0~lmludlng(hdMns(or~ ng inQllcuon* SwchlW axbtlng dm wurg
e.clmmd~~nplhirllufdm~~ory~~ol~r

L Specifications Through Conformance Testing Case Study of an
omputing Architecture

Ali Y. Duale,* Bruce D. MClure,** and M. emit Uyar*

U.S. Army Research Laboratory
ATl-Nz AMSRL-IS-TP ARL-TR-2010

Aberdeen Proving Ground, MD 21005-5067

Il. SUPPLEMENTARY NOTES

*Electrical Engineering Department, City College of the City University of New York, New York, NY 1003 1
**Defence Science and Technology Organization, P.O. Box 1500, Sahsbury, SA 5108, Australia

12a. DlSTRlBUTlONlAVAlLABlLlTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT(Maxlmum ZOO words)

The aim of this work is to enable a more rigorously tested product by integrating protocol specification and
conformance test sequence generation. Such an integration will allow for the removal of costly mistakes from a
specification at an early stage of the development process before they propagate into different implementations, possibly
combined with other errors. This integrated approach has been applied to the VHDL specification of a military-oriented
protocol prototype called the ‘Local Proxy.” Based on the results of the conformance test generation process, the Local
Proxy specification has been refined by uncovering various missing actions, removing redundancies, and restructuring
the specification to improve its testability.

14. SUBJECT TERMS 15. NUMBER OF PAGES

35
WDL, test generation, FSM, EFSM 16. PRICE CODE

17. SECURlTY CLASSlflCATlON 18. SECURITY CLASSlFlCATlON 19. SECURITY CLASSlFlCATlON 20. LIMITATION OF ABSTRACT
OF RBPORT OFTHIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-2806500

33
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-l 8 298-102

.

34

1

CURRENT
ADDRRSS

L Organization

OLD Name
.

ADDRESS
Street or P.O. Box No.

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers
to the items/questions below will aid us in our efforts.

1. AFlL Report Number/Author ARL-TR-2010 (Duale) Date of Report June 1999

2. Date Report Received
L

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will

* be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs

avoided, or efficiencies achieved, etc? Jf so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization,

technical content, format, etc.)

Organization

Name E-mail Name

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old

or Incorrect address below.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

